11 research outputs found

    Geometric Data Analysis: Advancements of the Statistical Methodology and Applications

    Get PDF
    Data analysis has become fundamental to our society and comes in multiple facets and approaches. Nevertheless, in research and applications, the focus was primarily on data from Euclidean vector spaces. Consequently, the majority of methods that are applied today are not suited for more general data types. Driven by needs from fields like image processing, (medical) shape analysis, and network analysis, more and more attention has recently been given to data from non-Euclidean spaces–particularly (curved) manifolds. It has led to the field of geometric data analysis whose methods explicitly take the structure (for example, the topology and geometry) of the underlying space into account. This thesis contributes to the methodology of geometric data analysis by generalizing several fundamental notions from multivariate statistics to manifolds. We thereby focus on two different viewpoints. First, we use Riemannian structures to derive a novel regression scheme for general manifolds that relies on splines of generalized Bézier curves. It can accurately model non-geodesic relationships, for example, time-dependent trends with saturation effects or cyclic trends. Since Bézier curves can be evaluated with the constructive de Casteljau algorithm, working with data from manifolds of high dimensions (for example, a hundred thousand or more) is feasible. Relying on the regression, we further develop a hierarchical statistical model for an adequate analysis of longitudinal data in manifolds, and a method to control for confounding variables. We secondly focus on data that is not only manifold- but even Lie group-valued, which is frequently the case in applications. We can only achieve this by endowing the group with an affine connection structure that is generally not Riemannian. Utilizing it, we derive generalizations of several well-known dissimilarity measures between data distributions that can be used for various tasks, including hypothesis testing. Invariance under data translations is proven, and a connection to continuous distributions is given for one measure. A further central contribution of this thesis is that it shows use cases for all notions in real-world applications, particularly in problems from shape analysis in medical imaging and archaeology. We can replicate or further quantify several known findings for shape changes of the femur and the right hippocampus under osteoarthritis and Alzheimer's, respectively. Furthermore, in an archaeological application, we obtain new insights into the construction principles of ancient sundials. Last but not least, we use the geometric structure underlying human brain connectomes to predict cognitive scores. Utilizing a sample selection procedure, we obtain state-of-the-art results

    Predicting Shape Development: a Riemannian Method

    Full text link
    Predicting the future development of an anatomical shape from a single baseline is an important but difficult problem to solve. Research has shown that it should be tackled in curved shape spaces, as (e.g., disease-related) shape changes frequently expose nonlinear characteristics. We thus propose a novel prediction method that encodes the whole shape in a Riemannian shape space. It then learns a simple prediction technique that is founded on statistical hierarchical modelling of longitudinal training data. It is fully automatic, which makes it stand out in contrast to parameter-rich state-of-the-art methods. When applied to predict the future development of the shape of right hippocampi under Alzheimer's disease, it outperforms deep learning supported variants and achieves results on par with state-of-the-art

    Predicting cognitive scores with graph neural networks through sample selection learning

    Get PDF
    Analyzing the relation between intelligence and neural activity is of the utmost importance in understanding the working principles of the human brain in health and disease. In existing literature, functional brain connectomes have been used successfully to predict cognitive measures such as intelligence quotient (IQ) scores in both healthy and disordered cohorts using machine learning models. However, existing methods resort to flattening the brain connectome (i.e., graph) through vectorization which overlooks its topological properties. To address this limitation and inspired from the emerging graph neural networks (GNNs), we design a novel regression GNN model (namely RegGNN) for predicting IQ scores from brain connectivity. On top of that, we introduce a novel, fully modular sample selection method to select the best samples to learn from for our target prediction task. However, since such deep learning architectures are computationally expensive to train, we further propose a \emph{learning-based sample selection} method that learns how to choose the training samples with the highest expected predictive power on unseen samples. For this, we capitalize on the fact that connectomes (i.e., their adjacency matrices) lie in the symmetric positive definite (SPD) matrix cone. Our results on full-scale and verbal IQ prediction outperforms comparison methods in autism spectrum disorder cohorts and achieves a competitive performance for neurotypical subjects using 3-fold cross-validation. Furthermore, we show that our sample selection approach generalizes to other learning-based methods, which shows its usefulness beyond our GNN architecture

    Intrinsic shape analysis in archaeology: A case study on ancient sundials

    Full text link
    This paper explores a novel mathematical approach to extract archaeological insights from ensembles of similar artifact shapes. We show that by considering all the shape information in a find collection, it is possible to identify shape patterns that would be difficult to discern by considering the artifacts individually or by classifying shapes into predefined archaeological types and analyzing the associated distinguishing characteristics. Recently, series of high-resolution digital representations of artifacts have become available, and we explore their potential on a set of 3D models of ancient Greek and Roman sundials, with the aim of providing alternatives to the traditional archaeological method of ``trend extraction by ordination'' (typology). In the proposed approach, each 3D shape is represented as a point in a shape space -- a high-dimensional, curved, non-Euclidean space. By performing regression in shape space, we find that for Roman sundials, the bend of the sundials' shadow-receiving surface changes with the location's latitude. This suggests that, apart from the inscribed hour lines, also a sundial's shape was adjusted to the place of installation. As an example of more advanced inference, we use the identified trend to infer the latitude at which a sundial, whose installation location is unknown, was placed. We also derive a novel method for differentiated morphological trend assertion, building upon and extending the theory of geometric statistics and shape analysis. Specifically, we present a regression-based method for statistical normalization of shapes that serves as a means of disentangling parameter-dependent effects (trends) and unexplained variability.Comment: accepted for publication from the ACM Journal on Computing and Cultural Heritag

    Microsatellite Marker in Gamma - Aminobutyric Acid - A Receptor Beta 3 Subunit Gene and Autism Spectrum Disorders in Korean Trios

    Get PDF
    This study aimed to identify the association between gamma-aminobutyric acid-A (GABA-A) receptor subunit β3 (GABRB3) gene and autism spectrum disorders (ASD) in Korea. Fifty-eight children with ASD [47 boys (81.0%), 5.5 ± 4.1 years old], 46 family trios, and 86 healthy control subjects [71 males (82.6%), 33.6 ± 9.3 years old] were recruited. Transmission disequilibrium test revealed that, 183 bp long allele in GABRB3 gene was preferentially transmitted in families with ASD (p = 0.025), whereas a population-based case-control study, however, showed no association between ASD and GABRB3 microsatellite polymorphism. Our data provide preliminary evidence that GABRB3 gene is associated with ASD in Korea

    ICLR 2022 Challenge for Computational Geometry & Topology: Design and Results

    No full text
    International audienceThis paper presents the computational challenge on differential geometry and topology that was hosted within the ICLR 2022 workshop “Geometric and Topo- logical Representation Learning”. The competition asked participants to provide implementations of machine learning algorithms on manifolds that would respect the API of the open-source software Geomstats (manifold part) and Scikit-Learn (machine learning part) or PyTorch. The challenge attracted seven teams in its two month duration. This paper describes the design of the challenge and summarizes its main findings

    SHREC 2021: Retrieval of cultural heritage objects

    No full text
    This paper presents the methods and results of the SHREC’21 track on a dataset of cultural heritage (CH) objects. We present a dataset of 938 scanned models that have varied geometry and artistic styles. For the competition, we propose two challenges: the retrieval-by-shape challenge and the retrieval-by-culture challenge. The former aims at evaluating the ability of retrieval methods to discriminate cultural heritage objects by overall shape. The latter focuses on assessing the effectiveness of retrieving objects from the same culture. Both challenges constitute a suitable scenario to evaluate modern shape retrieval methods in a CH domain. Ten groups participated in the challenges: thirty runs were submitted for the retrieval-by-shape task, and twenty-six runs were submitted for the retrieval-by-culture task. The results show a predominance of learning methods on image-based multi-view representations to characterize 3D objects. Nevertheless, the problem presented in our challenges is far from being solved. We also identify the potential paths for further improvements and give insights into the future directions of research
    corecore